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Stochastic Approximation

Given a function h, we seek to find a solution to h(x∗) = 0. However, we
only observe h(xn) in noise. Use the following recursion.

Algorithm

x [n + 1] = an [h(xn) + Mn+1]

where originally, M is mean zero, uncorrelated, bounded variance noise.
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Stochastic Approximation

Under suitable stability conditions (e.g. sup |xn| < K ), the recursion can
be approximated by ODE

ẋ(t) = h(x(t))

Which can be shown to converge if
∑

an = ∞
∑

a2
n < ∞
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ROBBINS-MONRO SCHEME (1951)

to solve h(x) = 0 given noisy measurements of h(·) : Rd →Rd:

xn+1 = xn + a(n)[h(xn) +Mn+1], n ≥ 0.

• ‖h(x)− h(y)‖ ≤ L‖x− y‖ ∀ x, y

• E[Mn+1|xi,Mi, i ≤ n] = 0 ∀n. (‘martingale difference’)

• E[‖Mn+1‖2|xi,Mi, i ≤ n] ≤ K(1 + ‖xn‖2) ∀ n.

• a(n) > 0,
∑
n a(n) =∞,

∑
n a(n)2 <∞.



The ‘o.d.e.’ approach:

(Derevitskii – Fradkov – Ljung)

Consider the iteration as a ‘noisy discretization’ of the o.d.e. (ordi-

nary differential equation)

ẋ(t) = h(x(t))

with step-sizes {a(n)}. If

• xns track x(t) in a suitable sense, and

• x(t)→ H := {x : h(x) = 0},

then we can expect xn → H a.s.



EXAMPLES



1. Gradient schemes

Here h(x) = −∇F (x). As an example, consider N users share an

ergodic Markov channel with stationary distribution ν.

Aim: Minimize average power subject to a minimum rate constraint.

• A = { unit coordinate vectors in RN} (i−th vector ≈ choice of

i−th user for the slot).

• p2(y|x) = conditional distribution of the user given channel state,

• p1(q|y, x) = conditional distribution of this user’s power con-

sumption.



Problem:

min
∫
ν(dx)

∑
y∈A

∫ ∞
0

p1(dq|y, x)p2(y|x)q subject to

∫
ν(dx)

∑
y∈A

∫ ∞
0

p1(dq|y, x) log(1 + qyixi) ≥ Ci ∀i.

Central idea: Use the Lagrange multiplier formulation in order to

cast the constrained optimization problem as an unconstrained min-

max (= max-min) problem, do the minimization over both the users

and power explicitly as above, and the maximization over Lagrange

multipliers by stochastic approximation. The foregoing theory en-

sures desired asymptotics (also verified by simulation experiments).



The optimal solution is to select user

k = argmini

(
(λi −

1

xi
)+ − λi[log(1 + (λi −

1

xi
)+xi)− Ci]

)
,

who will transmit power

q∗ = (λk −
1

xk
)+,

λi being the Lagrange multiplier associated with the i−th constraint.

{λi} can be learnt adaptively by the stochastic gradient scheme

λi(n+ 1) = Γ(λi(n)− a(n)yi(n)[log(1 + (λi −
1

xi
)+xi(n))− Ci]), ∀i.

Here yi(n) = I{αi ≤ αj, j 6= i} for

αi = q∗i − λi(n)[log(1 + (λi −
1

xi(n)
)+xi(n))− Ci], 1 ≤ i ≤ N,

and Γ is projection to [0, L] for a large L.



2. Fixed point iterations

Here, h(x) = F (x)− x, F a contraction w.r.t. a suitable norm.

Aim: Find its unique fixed point x∗ given by x∗ = F (x∗). (≈ globally

asymptotically stable equilibrium for the o.d.e. ẋ(t) = F (x(t))−x(t).

This can be extended to nonexpansive maps in some cases.)

Application to Dynamic Programming: Queue process {Xn}
given by Xn+1 = Xn − un + Wn+1, where {Wn} ≈ i.i.d. packet ar-

rival process with law µ and un ∈ [0, xn] ≈ the number of packets

transmitted at time n.

Constrained Markov decision process: Minimize

limn→∞
1

n

n−1∑
m=0

c(Xm, um) s.t. limn→∞
1

n

n−1∑
m=0

ci(Xm, um) ≤ Ci, ∀i.



Lagrange multiplier formulation ⇒ unconstrained MDP with running

cost c+
∑
i λici, λi’s ≈ the Lagrange multipliers. The corresponding

dynamic programming equation is

Ṽ (x) = min
u

[c(x, u) +
N∑
i=1

λici(x, u)− β +
∑
w
µ(w)Ṽ (x− u+ w)].

Here β = the optimal cost.

View the transition Xn → Xn+1 as a composition of

Xn → X+
n = Xn − un (the ‘post-state’)

and

X+
n → Xn+1 = X+

n +Wn+1.



In terms of {X+
n }, the dynamic programming equation becomes

V (x) =
∑
w
µ(w) min

u
[c(x+w, u)+

N∑
i=1

λici(x+w, u)−β+V (x−u+w)].

Note: The minimization is now inside the expectation. This allows

us to write the stochastic approximation version of the correspond-

ing ‘relative value iteration’:

Let νn(i) :=
∑n
m=0 I{Xm = i} (‘local clock’) and i0 a prescribed

state.

Vn+1(i) = Vn(i) + a(ν(i, n))I{X+
n = i}[min

u
[c(Xn+1, u) +

N∑
i=1

λi(n)ci(Xn+1, u)− Vn(i0) + V (X+
n+1)].



The Lagrange multipliers are updated on a slower timescale by the

stochastic ascent:

λi(n+ 1) = λi(n) + b(n)[ci(Xn, un)− Ci] ∀i.

The convergence can be proved by using the two timescale analysis

above.

That the slow component performs the correct gradient ascent is a

consequence of the generalized ‘envelope theorem’ from mathemat-

ical economics.



Back to Robbins-Monro: Idea of proof:

1. Let t(0) = 0, t(n) =
∑
m=0 a(m). Then t(m) ↑ ∞.

2. Let x̄(t(n)) = xn with linear interpolation on [t(n), t(n + 1)]

(piecewise linear interpolation).

3. For s ≥ 0, let ẋs(t) = h(xs(t)), xs(s) = x̄(s).

Then if P (supn ‖xn‖ < ∞) = 1 (i.e., iterates remain bounded with

probability one), then for T > 0,

lim
s↑∞

max
t∈[s,s+T ]

‖x̄(t)− xs(t)‖ = 0 w.p. 1.



To prove this, use Gronwall inequality to obtain:

maxt∈[s,s+T ] ‖x̄(t)− xs(t)‖ ≤

(error due to discretization) + (error due to noise).

a(n)→ 0 =⇒ error due to discretization → 0.

The martingale
∑
n a(n)Mn+1 converges with prob. 1

=⇒ the ‘tail’
∑
m≥n a(m)Mm+1 goes to zero w. p. 1

=⇒ error due to noise → 0.



Need ‘stability’: supn ‖xn‖ <∞ with prob. 1.

Test for stability:

Let h∞(x) := lim0<a↑∞
h(ax)
a .

If the origin is the globally asymptotically stable equilibrium for

ẋ(t) = h∞(x(t)), then supn ‖xn‖ <∞ with prob. 1.



‘martingale difference noise’ {Mn}:

• E[Mn+1|xm,Mm,m ≤ n] = 0 =⇒ ‘uncorrelated’

• E[‖Mn+1‖2|xm,Mm,m ≤ n] ≤ K(1 + ‖xn‖2) =⇒ ‘light

(conditional) tails’

=⇒ ‘GOOD’ NOISE. In practice, noise can get BAD (long range

correlations) or even outright UGLY (heavy tails).

MIKOSCH, RESNICK, ROOTZEN, AND STEGEMAN characterize

the regimes when one can expect these (Annals of Applied Proba-

bility, 2002)



Applications

Many DSP applications, including adaptive filtering

Network control

Adaptive routing

Service time control in queuing networks

In network applications, we wish to run control algorithms based on the
values of the flows. However, these might not be directly observed, might
be available as noisy estimates.
It has been observed empirically that queues and flows in large computer
networks exhibit heavy tailed distributions or long range dependence.
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Alpha stable Levy motion

Take Xi i.i.d. symmetric, P(|X1| > x) = x−αL(x) then

Snt

(nL(n))
1
α

→d SαS

(symmetric α-stable Levy motion)

0
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Alpha-stable Levy Motion properties

stationary, α-stable, i.i.d. increments.

Distribution of Snt√
n
→ ∞ (long range dependence)

Var(St) = ∞

Self-similarity: Snt =d n
1
α St

Samorodnitsky, Taqqu. “Stable Non-Gaussian Random Processes:
Stochastic models with infinite variance”
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Fractional Brownian Motion

Fractional Brownian Motion is the unique Gaussian H-sssi process.

Cov(BH(t1),BH(t2)) = 1
2

{

|t1|
2H + |t2|

2H − |t1 − t2|
2H

}

Var(BH(1))

H-sssi

fBM limit

Let Cov(X1,Xn) = n−αL(n) regularly varying. And {Xi} zero-mean
Gaussian.
Then, Snt

nH →d BH(t), where H = (1 − α
2 ).
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Fractional Brownian Motion

0

fractional Brownian motion − parameter: 0.9
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Consider a stochastic approximation scheme in Rd of the type

xn+1 = xn + a(n)[h(xn) +Mn+1 +R(n)Bn+1 +D(n)Sn+1 + ζn+1],

where

• Mn+1 for n ≥ 0 is the martingale difference noise as before,

• Bn+1 := B̃(n + 1) − B̃(n), where B̃(t), t ≥ 0, is a d-dimensional
fractional Brownian motion with Hurst parameter ν ∈ (0,1),

• Sn+1 := S̃(n+ 1)− S̃(n), where S̃(t), t ≥ 0, is a symmetric
α-stable process with 1 < α < 2,

• {ζn} is an ‘error’ process satisfying supn ‖ζn‖ ≤ K0 <∞ a.s. and
ζn → 0 a.s.,



• {R(n)} is a bounded deterministic sequence of d× d matrices,

• {D(n)} is a bounded sequence of d×d random matrices adapted

to Fn := σ(xi, Bi,Mi, Si, ζi, i ≤ n),

• {a(n)} as before with a(n) = Θ(n−κ) for κ ∈ (1
2,1].



Main theorem:

Suppose that the o.d.e. ẋ(t) = h(x(t)) has x∗ as the unique globally

asymptotically stable equilibrium and in addition, the following

‘stability condition’ holds:

for some ξ,1 ≤ ξ < α,

sup
n
E[‖xn‖ξ] <∞.

Then for 1 < ξ′ < ξ

E[‖xn − x∗‖ξ
′
]→ 0.

(Key steps of the proof follow.)



Recall that

E[‖B̃(t)− B̃(s)‖2] = C|t− s|2ν, t ≥ s ≥ 0,

and for I := the identity matrix,

E[(B̃(t)− B̃(s))(B̃(u)− B̃(v))]

=
C

2

(
|t− v|2ν + |s− u|2ν − |t− u|2ν − |s− v|2ν

)
I,

Then for mr(n) := min{n′ ≥ n :
∑n′
i=n a(i) ≥ r} and γ := 2κ(1 − ν)

for ν < 1
2, := κ for ν ≥ 1

2,

E

‖mt(n)∑
ms(n)

a(i)R(i)B(i+ 1)‖2
 ≤ C

nγ
.



Fernique’s inequality for Gaussian processes:

For p ≥ 2,K := 5
√

2π
2 p2, γ :=

√
1 + 4 log p and

ϕ(h) := max
s,t∈[0,1],|s−t|≤h

E
[
(Xt −Xs)2

]1
2 ,

the following holds:

P

(
max
t∈[0,1]

|Xt| ≥
[

max
x∈[0,1]

E[X2
t ]

1
2 + (2 +

√
2)
∫ ∞

1
ϕ(hp−y

2
)dy

]
x

)

≤ KΨ(x).



Combining, these lead to: for prescribed T > 0 and

m(n) ≥ min{m ≥ n :
m∑
j=n

a(j) ≥ T},

we have,

E

 ∑
n≤N≤m(n)

‖
N∑
i=n

a(i)R(i)Bi+1‖2
→ 0.



‘Joulin’s inequality’ =⇒

P

 sup
n≤j≤m(n)

‖
j∑

i=n

a(i)D(i)Si+1‖ ≥ x



≤
C(
∑m(n)
i=n a(i)

α2−1
α +1)

α
α+1

xα

for

x > C(
m(n)∑
i=n

a(i)
α2−1
α +1)

1
α+1.

(A. Joulin, ‘On maximal inequalities for stable stochastic integrals’,

Potential Analysis 26 (2007), pp. 57-78.)

=⇒ for 0 < ξ′ < ξ,

E

 ∑
n≤N≤m(n)

‖
N∑
i=n

a(i)D(i)Si+1‖ξ
′

→ 0.



As before, Gronwall inequality =⇒

(Deviation from o.d.e. in ξ′th mean on an interval of length T ) ≤

(discretization error)

+ (error due to martingale difference noise)

+ (error due to long range dependent noise)

+ (error due to heavy-tailed noise)

+ (error due to {ζn})

=⇒ convergence in ξ′th mean



Other results:

1. The stability test applies!

2. Concentration result for constant stepsize algorithms

3. Extension to general attractors, Markov noise,

asynchronous schemes.



Entropy rate

Let (Xn) be a discrete-time X -valued ergodic process, X finite.

p(x1, . . . , xn) denotes P(X1 = x1, . . . ,Xn = xn).

lim
n

1

n
E [− log p(X1, . . . ,Xn)] =: η exists,

and is called the entropy rate of the process.
The logarithm is to base 2.

Write X n
1 for (X1, . . . ,Xn).

In fact:
η = E [− log p(X1|X 0

−∞)] .

The ergodic theorem implies:

1

n

n∑
k=1

− log p(Xk |X k−1
−∞ )→ η a.s.
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Data compression

Let {0, 1}∗ denote the set of binary strings of finite length.

Consider a prefix-free mapping:

X n → {0, 1}∗ .

This means that no image is the prefix of any other image.

The image of xn1 is called the codeword for xn1 .

Let Ln(xn1 ) denote the length of the codeword for xn1 .

We have Kraft’s inequality:

E [2−Ln(X n
1 )] ≤ 1 .
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Kraft’s inequality

Proof of Kraft’s inequality, E [2−Ln(X n
1 )] ≤ 1.
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Barron’s lemma

Let {c(n)} be positive constants with
∑

2−c(n) <∞.

Barron’s lemma says we have:

Ln(X n
1 ) ≥ − log p(X n

1 |X 0
−∞)− c(n), eventually, a.s.

A consequence, from the ergodic theorem, is that:

lim inf
n

Ln(X n
1 )

n
≥ η a.s.

This may be called a first order converse source coding theorem.
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Proof of Barron’s lemma

P(Ln(X n
1 ) < − log p(X n

1 |X 0
−∞)− c(n)|X 0

−∞)

=
∑
xn1

p(xn1 |X 0
−∞)1(p(xn1 |X 0

−∞) < 2−Ln(xn1 )−c(n))

≤
∑
xn1

2−Ln(xn1 )−c(n)1(p(xn1 |X 0
−∞) < 2−Ln(xn1 )−c(n))

≤ 2−c(n)
∑
xn1

2−Ln(xn1 )

≤ 2−c(n) .
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Second order source coding theorems

By Barron’s lemma, we have:

Ln(X n
1 )− n η ≥

[
n∑

k=1

− log p(Xk |X k−1
−∞ )− n η

]
− c(n)

eventually a.s. for any sequence of positive constants with
∑

2−c(n) <∞.

Thus, if (Xn) is a sufficiently fast mixing process (e.g. a finite-order Markov
chain), then

lim inf
n

Lbntc − ntη

n1/2
≥Wt

where Wt is a scaled Brownian motion.

This is the second order converse source coding theorem of Kontoyiannis,
1997.

For finite-order Markov chains, or if one has sufficiently strong mixing for

max
x1

E | log p(x1|X 0
−n+1)− log p(x1|X 0

−∞)| ,

a matching second order direct source coding theorem holds for most
reasonable codes, e.g. Shannon codes, Huffman codes or Lempel-Ziv codes.
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Aim of this talk

We are motivated by the empirical observation of long-range
dependence in variable bit rate video traffic, starting with Garrett and
Willinger, 1994 and Beran, Sherman, Taqqu, and Willinger, 1995.

We ask:
What happens when (Xn) is a long-range dependent process?
Specifically:
Can we find a codec to make (Ln) short-range dependent?

Loosely speaking, we propose the answer: No.

More precisely, we prove a theorem about long-range-dependent
renewal processes that says: No.
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Long-range-dependent renewal processes

Known facts from Daley, 1999

Let (Xn) be a renewal process with interarrival times having the
distribution of T . Then, for 1 < p < 2, the following statements are
equivalent:

i T has moment index p.

ii (Xn) has Hurst index H = 1
2 (3− p).

Here, the moment index of T is defined by:

p = sup{κ ≥ 1 : E [Tκ] <∞} ,

and a stationary ergodic process (Zn) with E [Z 2
0 ] <∞ is said to have

Hurst index H if:

H = inf{h : limsupn
var(

∑n
k=1 Zk)

n2h
<∞} .
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Main theorem

Let ρn denote − logP(Xn|X n−1
−∞ ).

We show that E [ρ2
n] <∞ and that (ρn) has the same Hurst index as

(Xn).
By Barron’s lemma, this, in principle, gives second-order converse
source coding theorems for long-range-dependent renewal processes.

Main theorem

Let (Xn) be a renewal process with interarrival times having the
distribution of T . Then, for 1 < p < 2, the following statements are
equivalent:

i T has moment index p.
ii (Xn) has Hurst index H = 1

2 (3− p).
iii (ρn) has Hurst index H = 1

2 (3− p).
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The question of interest for Markov chains

For a countable state stationary ergodic Markov chain, if any return
time has infinite variance, then all return times have the same
moment index (Carpio & Daley, 2007).

For such a chain, we say it has Hurst index H if a (any) return time
has moment index corresponding to Hurst index H.

Our question is of the type:
When does an instantaneous function of such a Markov chain have
the same Hurst index as the chain?

An example for which this fails (Carpio & Daley 2007):
Let M3

n = (M1
n ,M

2
n) ∈ S1xS2. where (M1

n) has Hurst index
1
2 < H < 1, while (M2

n) has return times with finite variance. Then
(M3

n) will inherit the Hurst index of (M1
n). However, instantaneous

functions of Mn
3 that only depend on M2

n will produce processes with
Hurst index 1

2 .
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The relevant facts from Carpio & Daley

Carpio & Daley, 2007

var(ρ0 + . . .+ ρn)− (n + 1)var(ρ0)

2R
(n)
11 /π1

=
∑
i

∑
j

ρ(i)ρ(j)πiπj
R
(n)
ij /πj

R
(n)
11 /π1

πi denotes the stationary
distribution of state i

Q
(n)
ij :=

∑n
r=1(p

(r)
ij − πj)

R
(n)
ij :=

∑n
r=1Q

(r)
ij

Q
(n)
ij →∞

R
(n)
ij

n →∞
R

(n)
ij /πj

R
(n)
11 /π1

→ 1

limn
var(ρ0+...+ρn)

2R
(n)
11 /π1

?
=
∑

i

∑
j ρ(i)ρ(j)πiπj

(Berkeley) LRD Models Oct 2010 45 / 69



A general theorem for instantaneous functions

Theorem

Let (Mn) be a stationary ergodic Markov chain, taking values in N, with
interarrival times having infinite variance. Let ρ : N→ R is such that∑

i∈N πiρ(i)2 <∞. Write ρn for ρ(Mn). If

lim
i→∞

ρ(i) = µ ,

with
µ 6=

∑
i

πiρ(i) ,

then (ρn) has the same Hurst index as (Mn).
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Applying the theorem to a renewal process

ρ(0) = − logP(T = 1).

ρ(2k − 1) = − logP(T > k |T ≥
k).

ρ(2k) = − logP(T = k + 1|T ≥
k + 1).

π(2k) = P(T=k+1)
E [T ] ,

k = 0, 1, 2, . . ..

π(2k − 1) = P(T≥k+1)
E [T ] ,

k = 1, 2, . . ..

We can show that
∑

i π(i)ρ(i)2 <∞.
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The theorem is not good enough

Consider the basic renewal process (Xn) with P(T > k) = k−αL(k).
1 < α < 2, where L(k) is slowly varying.

Then ρ(i)→ 0 when moving through the odd states

However, ρ(i)→∞ when moving through the even states.

The theorem is not directly applicable, even to this basic example.
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A souped-up theorem

Theorem

With (Mn) and assumptions as before, let A ⊆ N be subset of states such that
the functions

i → 1

Q
(n)
11

1(i ∈ A)|ρ(i)− µ|
n∑

r=1

∑
j∈A

1p
(r)
ij |ρ(j)− µ|

are uniformly integrable with respect to the probability distribution i 7→ πi and

that 1

Q
(n)
11

∑
i∈A πi (ρ(i)− µ)

∑n
r=1

∑
j∈A 1p

(r)
ij (ρ(j)− µ) converges to 0 as n→∞.

If
lim

K→∞
sup

i∈Ac∩{i>K}
|ρ(i)− µ| = 0

and
µ 6=

∑
i

πiρ(i) ,

then (ρn) has the same Hurst index as (Mn).
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Financial time series

rn = log Pn
Pn−1

, is called the log returns, where Pn is the price of some
asset.

rn is well modeled by a Martingale difference process, due to the
efficient market hypothesis.

The absolute returns |rn|d have been empirically shown to exhibit
long memory.
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Mandelbrot’s model for wheat prices

Can a simple model account for
this observation?

Mandelbrot’s model for wheat
prices

Weather has runs of
good/neutral/bad days.

Good/bad period is followed by
neutral period (and visa versa)

The ‘fundamental price’, X̂n,
increases by 1 on good days,
decreases by 1 on bad days,
unaltered on neutral days.
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Mandelbrot’s model for wheat prices

Distribution of length of each
period f (T > t) = t−α

Market calculates
Xn = limt→∞ E [X̂n+t |X̂ n−1

−∞ ].

By construction Xn is a
Martingale.
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Mandelbrot’s model for wheat prices

Xn changes as follows: increases
by α

α−1 for every good day,

Decreases by α
α−1 for every bad

day.

The first neutral following t
good days decreases Xn by t

α−1 .

The first neutral following t bad
days increases Xn by t

α−1 .

The price is unchanged for the
following neutral days.
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The Markov chain

The weather can be modeled as
a MC.

The differences in fundamental
price is a function of this chain
(Good = ‘1’, Bad=‘-1’,
Neutral=‘0’)
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The Markov chain

For the Market price returns
(rn), we need to also know
where we jumped from.

rn takes values ± α
α−1 , 0,±

t
α−1 ,

where t the in number of days
preceding the jump.

What is the Hurst index of |rn|d?
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Queuing example

X1 i.i.d. with heavy tails.

X2 i.i.d. with light tails (or a SRD Markov process)

Server has unit capacity
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LRD behavior under LQF

Let M1,M2 be MCs representing
the two sources.

(M1(n),M2(n),Q1(n),Q2(n)) is
a MC (under any queue length
based scheduling).

Busy-idle function 1(Q1(n) = 0)
is LRD.

Is 1(Q2(n) = 0) LRD under LQF?
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Solution: financial time series

State 1 (red).
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Solution: financial time series

State 1 (red).

c1 = 0, c2 = α
α−1 , c3 = 0

In groups 1,2, ρ− ck = 0. In
group 3, 1pij = 0. (all returns
are through state 1).

Therefore the condition

lim
n→∞

1

Q
(n)
11 /π1

n∑
r=1

∑
i ,j∈Ak

πi |(ρ(i)− ck)(ρ(j)− ck)|1p(r)
ij = 0 ∀k

is satisfied.
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Solution: financial time series

We get

lim
n→∞

var(
∑n

r=1 ρi )

R
(n)
11 /π1

=
2

3
(µ− α

α− 1
)2 +

1

3
µ2 > 0

for any d for which |rn|d has finite variance. (d < α/2)

|rn|d has Hurst index H = 1
2 (3− α).
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Solution: LQF scheduling

We took ρ(n) = 1(Q2(n) = 0)
It is enough to verify

lim
n→∞

1

Q
(n)
11 /π1

∑
i ,j :Q2=0

πi

n∑
r=1

1p
(r)
ij = 0

Note that
∑

i ,j :Q2=0 πi
∑n

r=1 1p
(r)
ij is the

stationary time spent in the states
{Q2 = 0} before the chain visits (0, 0, 0, 0).
Idle slot for Q2 is exponentially distributed.

Idle slot beginning at time n implies Q1(n − 1) = 0, M2(n) ≤ 1.
With each idle period, there is a positive chance (namely
P(M1(n) = 0,M2(n) = 0)) independent of what happened previously,
that the chain visits (0, 0, 0, 0).
Thus, there are at most exponentially many idle periods of Q2 before
going to (0, 0, 0, 0).
Conclude 1(Q2(n) = 0) has the same Hurst index as the chain
(M1(n),M2(n),Q1(n),Q2(n)), which is determined by the tail index
of X1.
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